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Abstract-This paper presents a method for improving the carrying capacity of structures due to
the loss of overall structural stability, The proposed method is based on adding a displacement
dependent force to a support according to a prescribed rule. Simple numerical examples are
presented. These examples are confined to the application of the pseudo-follower reactive force and
for in-plane framed structures, The results are obtained with the assumption that the change of the
geometrical configuration due to loading is negligibly small before the instability occurs. The
numerical results show that a significant improvement in the stability can be expected by the
application of the proposed reaction system. In this paper only systems with non-conservative
follower forces not explicitly dependent on time are considered.
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tensor of elastic moduli
strain tensor
carrying capacity
surface forces
nodal forces
corrective matrix for nodal follower loads
corrective matrix for distributed follower loads
corrective matrix for nodal reactive forces
elastic stiffness matrix
geometric stiffness matrix
length
mass matrix
body forces
displacement-dependent distributed loads
stress resultant
reactive forces
pseudo-follower reactive forces
exceptionally conservative non-working reactive forces
time
displacement
volume
multiplication factor of corrective force
Kronecker delta
load multiplier
stress tensor
rotation about axis
rotation about z axis at node i
natural frequency
differentiation with respect to Xi' i.e. Lagrangian Cartesian coordinates o( )/oxi
parts and components concerned with displacement-dependence
X and y components of force applied at node i
quantities under loading state.
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I. INTRODUCTION

The purpose of this article is to propose a method which can improve the carrying capacity
of structures due to the loss of overall structural stability. It is achieved by introducing a
supporting system in which an active force is added to the support. A displacement depen­
dent force is considered for this active force. The magnitude and direction of this force is
determined by a given rule. This kind of support may be called an active control system or
a dynamic reaction system.

We suggest that one of the rules imposed on the reaction of this support may be the
rule of a fol1ower force. It means that the direction of the reactive force follows the rotation
of a structural element at the support. In a particular case, the reactive force may remain,
for example, tangential to the displaced axis of a structural element. Beck (1952) provides
a wel1-known example of such a tangential follower force. He analysed a column, one end
of which was rigidly fixed while the other was free and subjected to a compressive load.
The direction of the load was always tangential to the displaced column axis at the loading
point. His study of smal1 flexural vibrations showed that the critical load is about eight
times the Euler load of the same column. This study showed that a non-conservative stability
problem must be analysed by means of a dynamic criterion as commonly used static
methods ofdetermining critical loads lead to erroneous results as obtained by Pfluger (1950)
and Feodos'ev (1953).

The dynamic method proposed by Beck was later widely discussed by, for instance,
Bolotin (1963) and Ziegler (1968). Ziegler analysed those cases when the conservative
systems could be stabilized or made unstable by non-conservative follower forces not
explicitly dependent on time. Historical reviews of the development of the concept of the
fol1ower forces were given by Bolotin (1963) and Herrmann (1967). The vibration and
stability of elastic systems subjected to follower forces were reviewed and a comprehensive
study of the development in this field was also made by Sundararajan (1975). Many
researchers have been interested in problems related to follower forces. Leipholz (1980)
describes selected non-conservative problems of stability including the effects of damping,
load and mass distribution and support conditions.

For the present study, the most important fact is that non-conservative follower forces
not explicitly dependent on time have, in general, a stabilizing effect on structures. In
addition to the column studied by Beck, this fact was demonstrated by Argyris and Symeon­
idis (1981) through numerical examples on frames. Given that one of the inherent features
of follower forces is the capability to improve the carrying capacity of a structure, by
analogy, we can predict similar results for fol1ower reactive forces. The results presented in
the following parts confirm our expectations. In normal engineering practice, a designer
has, in principle, no choice of loads acting on a structure. From this point of view, the
increase of the carrying capacity by the fol1ower force is meaningless. On the other hand
the designer can always design supports in the way he wants. The stabilizing effect of the
follower force may be turned to advantage if we impose such force systems on supports.
With this system, we could considerably improve the stability of structures. The effect of
the proposed support would be worth studying and the results of this preliminary study are
presented in this paper.

2. CLASSIFICATIONS AND DEFINITIONS

In this paper we deal with conservative loads, non-conservative follower forces and
non-working exceptionally conservative reactive forces. The terminology and classifications
used herein were adopted from works by Ziegler (1968) and Argyris and Symeonidis (1981).
The classification of conservativeness of a force is based on the condition that a potential
function is present for the force. There is no potential function present for the non­
working rective forces, but following the existing terminology in the literature we call them
exceptionally conservative non-working reactive forces (Argyris and Symeonidis, 1981).

Additionally, we introduce a non-conservative rotation-dependent reactive force
applied at a support. To simplify the presentation, we consider a roller support of in-plane
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(0) (b) (c)

Fig.!. RoIler support: (a) Before the occurrence ofinstability ; (b) After the rotation with tangential
pseudo-foIlower reactive force; (c) After the rotation with pseudo-foIlower reactive force modified

by factor y.

structures as shown in Fig. 1, for which an active force is applied in the freely movable
direction of the support. The roller support with non-working exceptionally reactive force
is shown in Fig. 1(a). After the rotation of the support caused by load, the extra force is
added to the support. Then, the reactive force consists of two components. One component
is the non-working exceptionally conservative reactive force RO and the other is an extra
force applied at the support R nonO. To emphasize that the reactive force includes the rotation­
dependent non-conservative force, this reaction is called a pseudo-follower reactive force.
The extra rotation-dependent non-conservative force is called the corrective force of the
pseudo-follower reactive force. The corrective force controls the direction and the mag­
nitude of the resultant. In a particular case, the resultant RPse of these two forces is tangential
to the displaced axis by angle </J as shown in Fig. I(b). In this case the resultant is called a
tangential pseudo-follower reactive force. The corrective force of the tangential pseudo­
follower reactive force is written as RnonO(RO, </J) = R°</J when the rotation is sufficiently
small. To increase the critical load, it is not necessary for the direction of the follower
force to be tangential. To consider a non-tangential pseudo-follower reactive force, a
constant multiplication factor y is introduced to the particular corrective force which makes
the direction of the reaction tangential. Then, the corrective force can be expressed as

(1)

This case is shown in Fig. I(c). When y = 0, the corrective force is equal to zero and the
pseudo-follower reactive force is reduced to the ordinary reaction of a roIler support. With
the increase or decrease of y, the direction of the reaction changes. When y = I, it becomes
a tangential pseudo-follower reactive force.

Argyris and Symeonidis (1981) classified systems with respect to the form of instability
as: purely conservative systems; divergence type non-conservative systems; flutter type
non-conservative systems; and hybrid-type systems. After the addition of the corrective
force at a support, we can still utilize the above for the classification of the systems.

3. FORMULATION OF STABILITY WITH DISPLACEMENT-DEPENDENT REACTIONS

The governing equilibrium equations, strain-displacement relations and elastic consti­
tutive equations for the elastic finite displacement theory for a three-dimensional solid are
given for example by Washizu (1982). According to his work, the critical value ofan elastic
stability problem can be determined by checking the existence of at least one additional,
distinct equilibrium in the very close neighborhood of an equilibrium configuration under
the identical loading. The determination of the adjacent equilibrium can be made by the

SAS 30:5-1
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linearized theory at the original equilibrium configuration which we call a reference state.
The criterion given above needs to be modified for the non-conservative system. For this
system, the form of equilibrium is said to be stable if a slight disturbance causes a small
deviation of the system from the considered equilibrium configuration, but by decreasing
the magnitude of the disturbance the deviation can be made as small as required. On the
other hand, the equilibrium is said to be unstable if a disturbance, however small, causes a
finite deviation of the system from the considered form of equilibrium.

The formulation presented by Washizu (1982) can be modified to incorporate the
above written criterion. The second Piola-Kirchhoff stress tensor, the Green's strain tensor,
displacements, body and surface forces are denoted with the addition of the nought symbol
( )0 as O"g, eg, u?, p? and P?, Both conservative and non-conservative follower forces are
considered for both body and surface forces. For a design analysis, these quantities are
usually the quantities under the design load. With the assumption (Washizu, 1982) that
changes in geometrical configuration of the body remain negligible until the instability
occurs, all the responses of the body caused by external forces are linear. Because of the linear
response, when forces are increased monotonically Atimes from the loading condition, the
body is in equilibrium with stresses AO"g under body forces AP? in volume V, and surface
traction AP? and the exceptionally conservative non-working reactive forces AR? on the
surface S. This equilibrium state is regarded as the reference state. In the adjacent equi­
librium configuration under the action of the identical magnitudes of non-conservative
forces but without the addition of the corrective forces, we can write the stresses, strains,
b d d i'. i' 1 0+ ' 0+ 'p O+ 1pnono 1PO+ 1pnono + , RnonO ho y an surlace lorces as r'O"ij O"ij, Aeij eij , A i /I. i ,'"' i A i /I. i ,were
( r n = quantities arising due to displacement-dependency ofloads including the corrective
forces, and the symbol "non" stands for non-conservativeness; Pi = body forces; P,
= surface forces; and Ri = reactive forces working at support; P?onO and F?onO = linear
components of forces at displaced state produced by displacement-dependency of follower
forces; and R?onO = corrective force of the pseudo-follower reactive force. Both Ri and Pi
are external surface forces applied at the surface but distinct notations are used to emphasize
the difference between the corrective forces of the pseudo-follower reactive forces and
the ordinary surface forces. Since the existence of a distinct equilibrium in a very close
neighborhood is of concern, the incremental quantities are of infinitesimal magnitudes,
while the quantities at the reference state are of finite magnitudes.

To study instability using the small oscil1ation method, the virtual work equation for
an adjacent equilibrium (Washizu, 1982) is supplemented with the term representing the
work done by d'Alambert's force. Supplementing also the terms arising due to displacement­
dependency of the forces and the corrective force, it can be written as

where Pm = mass density of material, C) = double differentiation with respect to time and

(3)

Note that the term R?onO is multiplied by A because R?ono is described as expressed in eqn
(1). The integration is performed over the volume V and surface S before the deformation
of the body.

Noting that the reference state is in static equilibrium, a similar virtual work equation
holds in the reference state except for the term representing work done by d'Alambert's
force and those of the displacement-dependent forces. The difference between eqn (2) and
that at the reference state and the negligence of the higher order terms of small quantities
result in
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where

(5,6)

Since incremental quantities from the reference state are of infinitesimal magnitudes,
stresses (Jjj> forces P, Fand R in eqn (4) are linear functions of the incremental displacement
Uj and their derivatives.

The governing equilibrium equations and associated boundary conditions can be
obtained from eqn (4).

4. CORRECTIVE MATRIX

Let us consider the case for which a non-working exceptionally conservative reactive
force ).RP is acting at the reference state at a node i. When the reactive force has two
components in x and y directions in a global coordinate system, these components are
expressed by )'R~j and )'R~j. The component of the rotational displacement vector per­
pendicular to the x-y plane is denoted by <Pzj. Although the magnitude of the exceptionally
conservative non-working reactive force does not change its magnitude during instability
motion, the magnitudes of the components of the pseudo-follower reactive force change by
the application of the corrective force )'RfonO . The components of the pseudo-follower
reactive force after displacement are given by the resultants of the components of the
corrective force and the non-working exceptionally conservative reactive force. With the
assumption that <Pzi« I, they are given by )'R2j+)''}'R~fnO and A.R~i+).'}'R~fnO. The difference
between the new components and components at the reference state can, then, be written
as

where

{R nono } (Rnono R nono O>T ( RO A.. R OA.. O>Ti = xi' yi' = - yi'f'z;' xio/zi, ,

and KcRj for the ith node is expressed in an explicit form as

(7)

(8)

(9)

[

0 0

KCRj = 0 0

o 0

We can define KCR as

(10)

(II)

where N = number of nodes where corrective forces act in the system; and
diag [...] = N x D dimensional diagonal matrix, D being number ofdegrees of freedom per
node. In the case of in-plane framed structures, D = 3. Following the same derivation but
replacing RO by F O and R nonO by FRonO

, for which the identical relation to eqn (8) holds, we
could obtain the corrective matrix for nodal active tangential follower forces.
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5. CRITERIA FOR STABILITY PROBLEM

The limit of the stability of a system is given by the singularity condition of the
following matrix, which can be obtained from eqn (4) by using a standard finite element
integration technique of the governing differential equations after imposing kinematic
constraints such as the Bernouli-Euler hypothesis for the case of beam elements

in which w is the frequency introduced by {d} = {f} eiwt and {J} = amplitude independent
of time t; pO and pO = displacement-dependent distributed loads and nodal forces at the
reference state, respectively; R°= exceptionally conservative non-working reactive forces;
Q °= stress resultant under the design loading; KE = elastic stiffness matrix of small dis­
placements; KG = geometric stiffness matrix; Kcf , Kcp = corrective matrices for nodal and
distributed loads; and KCR = corrective matrix for nodal reactive forces applied at the
support. The matrices KG, Kcf , Kcp and KCR are functions of the applied loads.

After the addition of the corrective forces at supports, we can find the load multiplier
A for which this structure becomes unstable from the solution of eqn (12) using the same
method as used by Argyris and Symeonidis (1981). Equation (12) is solved for the smallest
absolute value of A for which w is either equal to zero or becomes a complex number with
a negative imaginary part. The first case corresponds to static instability (divergence) and
the other to dynamic instability (flutter). The sign of Adepends on how loads are applied.
The critical values we want can be obtained as AFo and /cpo.

6. NUMERICAL EXAMPLES

The phenomenon caused by the addition of the newly introduced supports with the
pseudo-follower reactive force is illustrated through numerical examples of in-plane framed
structures. The difference of the carrying capacity due to the difference of the loading and
supporting systems are studied for a variety of these combinations. The geometric stiffness
matrix available in the literature as given for example by Przemieniecki (1968) was used in
the following analysis. This geometric matrix can be derived from eqn (4) considering only
internal axial forces, which cause axial stresses and displacements, at the reference state.

The frame shown in Fig. 2 is investigated first for the following four cases. The frame
is subjected to: (a) a conservative concentrated force with the support being the ordinary
roller support subjected to exceptionally conservative non-working reactive force [Fig.
2(a)]; (b) a tangential follower force with the same support as in case (a) [Fig. 2(b)]; (c) a

(0) (b) (c) (d)
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-

\
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Fig. 2. In-plane frame: (a) Conservative load and roller support; (b) Tangential follower force and
roller support; (c) Conservative force and support with tangential pseudo-follower reactive force;

(d) Tangential follower force and support with tangential pseudo-follower reactive force.
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Table I. Comparison of ratios of critical loads of frames in Fig. 2 (a), (b), (c), (d) with
the critical load of the frame in case (a)

Case (a) (b) (c) (d)

Load conservative tangential conservative tangential
force follower force follower

force force

Support roller roller tangential tangential
pseudo pseudo
follower follower

Type of divergence divergence divergence flutter
instability

Ratio 1.46 1.46 16.62

conservative force with the roller support subject to a tangential pseudo-follower reactive
force [Fig. 2(c)] ; and (d) a tangential follower force with the same support as in case (c)
[Fig. 2(d)]. The classifications ofloadings, the type of instability and the ratios of the critical
loads with a reference to case (a) are given in Table 1. In cases (b) and (c), the increment
ratios of the critical loads are equal to 1.46. The same ratios are due to the symmetry of
the frame. The significant effect is seen in case (d). The implementation of the proposed
support with the tangential pseudo-follower reactive force increases the carrying capacity
more than 16 times. The results show a significant increase of the carrrying capacity of the
system due to the proposed support.

Another example is shown in Fig. 3 where the frame is subject in all four cases to a
conservative external force. Each frame possesses different kinds of supports, namely, an
ordinary roller support, a roller support with the tangential pseudo-follower reactive force,
a hinge support and a fixed support. The results are listed in Table 2. Compared with the
critical value of the frame with the roller support, the increase in the carrying capacity for
the hinge support is 9.8 times, while the proposed support with the tangential pseudo­
follower reactive force is 11.3 times. In the case of the fixed support, the increase of the
carrying capacity is the largest at 19.03 times.

To observe the changes of the critical values with the change of the direction of the
pseudo-follower reactive force, the direction of the reactive force is changed by multiplying
the corrective force by the factor y introduced in eqn (I). The results are plotted in Fig. 4.
The carrying capacity was non-dimensionalized by the critical load of the frame with a
roller support. A square symbol represents a critical load due to flutter and a cross symbol
due to divergence. The critical load increases with the increase of y. When y = 0, it coincides
with the critical load of the ordinary roller support. When y is negative, the critical load is
even less than that with the roller support. The jump of the critical load can be seen between
y = 0 and 1. This sudden increase of the critical load is due to the change of the loss of the
stability from divergence to flutter. The tangential pseudo-follower reactive force of Fig. 3

(0) (b) (c) Cd)

Fig. 3. Frame under conservative load: (a) Roller support; (b) Support with tangential pseudo­
follower reactive force; (c) Hinge support; (d) rixed support.
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Table 2. Comparison of ratios of critical loads of frames in Fig. 3 (a), (b), (c), (d) to the
critical load of the frame in case (a)

Case (a) (b) (c) (d)

Load conservative conservative conservative conservative
force force force force

Support roller tangential hinge fixed
pseudo
follower

Type of divergence flutter divergence divergence
instability

Ratio 11.3 9.8 19.03

corresponds to the case of y = 1. For y around 1.3 and above, the critical load exceeds that
for the fixed support shown in Fig. 3(d).

The fixed support can be represented by a roller support with infinitely stiff springs for
translation and rotation. The fact that the carrying capacity exceeds that for the fixed
support for certain values of y leads to the conclusion that the proposed support increases
the stability more than the stiffest spring and cannot be identified with an ordinary spring.
There is a certain limit in the increase of the carrying capacity which occurs around y = 2.
With a further increase in y, the decrease of the carrying capacity is observed, as marked
by cross symbols. This is due to the change of the stability failure from flutter to divergence.

There may be a possibility that other functions can be imposed on the corrective force
of the pseudo-follower reactive force. We can think, for example, about displacements in
other parts of the structure. In this paper, however, our attention is confined to the corrective
force of the rotation dependent pseudo-follower reactive force at the support where the
corrective force is applied.

7. REALIZABILITY

The question remains whether it is possible to realize the proposed support, until
careful study on the realizability is made. The following, however, suggests one possible
way to realize the system.

Noting the fact that hinge and fixed supports are widely used in the construction of
framed structures, it is not a difficult task to construct a device to resist the horizontal
reaction. Our consideration is limited to a static problem or a problem for which the change
of loading with time is slow so that the problem can be solved as a static problem with
different loading positions. For this case, the corrective force of the pseudo-follower reactive
force AyRnono could be applied by an oil jack with a motor controlled valve. For this purpose,
the valve is to be controlled by a sensor system, which is attached to the end of the structural
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Fig. 4. Dependence of the carrying capacity of the frame in Fig. 3(b) on the modification factor 1'.
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element at the support and can measure both the rotational angle and the value of the
exceptionally conservative non-working reactive force. As can be seen in Fig. 4, it is not
necessary for the control of the corrective forces to be very exact to achieve the designated
direction. A certain error in its direction and magnitude would be tolerated by shifting the
direction to the safer side.

Since the carrying capacity increases monotonically with the increase of the multiplying
factor y within a certain limit, a slightly larger value of corrective force than the optimum
value would be preferable at least in the case of the example in Fig. 4 for the above
mentioned safety. The increase of the value of the corrective force also increases the cost
of the system to apply the force. This leads to an optimization problem to decide the value
of the optimal corrective force. Since the cost of construction of the system to apply the
corrective force may not be much different for a small difference in the magnitude of the
force, no study is made for this optimization.

8. POSSIBLE APPLICATIONS

Assuming that the support with the pseudo-follower reactive force is realizable, we
would like to suggest some possible applications to encourage future study on pseudo­
follower reactive force. The main emphasis of the proposal is for the design of permanent
support, even if this cannot be realized in the near future. More immediate and possible
applications of the proposed system would be the temporary improvement of carrying
capacity. We could think about larger structures with fewer supports.

The following fields would be the first step of the application of the proposed system.
(1) It could be used during an assembly process when the incomplete structure needs a
temporary improvement in the carrying capacity. During the erection of the structures, not
only the structural shapes but also both loading conditions and positions of supports, i.e.
the boundary conditions, are usually significantly different compared with their completed
conditions. There are many members which are determined by the condition during the
erection rather than by the loading after the completion of the structures. (2) The system
could be useful in temporarily improving the carrying capacity of a structure where the
increase of the load is rare but predictable, for example transportation of heavy equipment
over an existing bridge. (3) The system could also be useful to improve the safety ofexisting
structures, which either may have lost the carrying capacity or have to carry increased
loading compared with the design load, or when modification is desired, for example, the
addition of one storey. (4) The system could be used to improve the carrying capacity for
very large loadings but their occurrence is scarce, such as earthquakes and heavy wind.
However, the reliability of the proposed supports is subject to question.

9. CONCLUSIONS

We presented one possible way to improve the carrying capacity of structures in the
application ofthe additional displacement-dependent forces at supports. This improvement
of the carrying capacity for the failure due to the loss of stability was numerically studied.
In the numerical examples of this report, only the corrective force for a roller support of
in-plane structures was studied. There may be, however, other ways to apply additional
forces, which could be the subject of a further study.

We found the critical load under the assumption that, in spite of the increase ofloading,
changes in geometrical configuration of the body remain negligible until the instability
occurs. Reality may be different, however, and obtained results should be verified by a more
exact non-linear approach. Initial imperfections and other factors should be considered.

The concept of the pseudo-follower reactive force can easily be extended. The corrective
force may be understood as either ordinary force or moment and similarly, displacement
components can be understood as both rotations and displacements. The rule according to
which the reactive force is applied may be arbitrary provided that it increases carrying
capacity.
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The proposed method indicates a possible improvement in the carrying capacity of a
system, which is not reported in the literature checked by the authors.
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